Exercise 59

The Michaelis-Menten equation for the enzyme chymotrypsin is

$$v = \frac{0.14[S]}{0.015 + [S]}$$

where v is the rate of an enzymatic reaction and [S] is the concentration of a substrate S. Calculate dv/d[S] and interpret it.

Solution

Use the quotient rule to differentiate v with respect to [S].

$$\frac{dv}{d[S]} = \frac{d}{d[S]} \left(\frac{0.14[S]}{0.015 + [S]} \right)$$
$$= \frac{\left[\frac{d}{d[S]} \left(0.14[S] \right) \right] \left(0.015 + [S] \right) - \left[\frac{d}{d[S]} \left(0.015 + [S] \right) \right] \left(0.14[S] \right)}{\left(0.015 + [S] \right)^2}$$
$$= \frac{\left(0.14 \right) \left(0.015 + [S] \right) - \left(1 \right) \left(0.14[S] \right)}{\left(0.015 + [S] \right)^2}$$
$$= \frac{0.0021}{\left(0.015 + [S] \right)^2}$$

 $dv/d[{\rm S}]$ is the rate of change of the reaction rate with respect to an increase of substrate concentration.